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Abstract

Four examples of the re®nement of twinned structures
are discussed. These structures illustrate three different
types of twins: twinning by merohedry, pseudo-mero-
hedry and non-merohedral twins. How the twinning was
detected, how the structures were solved and how they
were re®ned are shown in this paper. The difference
between a re®nement as a disordered model and a
twinned model is illustrated. Sometimes the twin law
was necessary to solve the structure, while in the other
examples the twinning was ®rst recognized during
re®nement of the structures. Finally, a list of `character-
istic warning signs' is presented which are indicative of
possible twinning.

1. Introduction

A typical de®nition of a twinned crystal is the following:
`Twins are regular aggregates consisting of crystals of the
same species joined together in some de®nite mutual
orientation' (Giacovazzo, 1992). Therefore, for the
description of a twin two things are necessary: a
description of the orientation of the different species
relative to each other (the twin law) and the fractional
contribution of each component. The twin law can be
expressed as a matrix which transforms the hkl indices of
one species into the other.

In SHELXL (Sheldrick, 1998) the twin re®nement
method of Pratt et al. (1971) and Jameson (1982) has
been implemented. F2

c values are calculated by
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where o.s.f. is the overall scale factor, km is the fractional
contribution of twin domain m, Fcm

is the calculated
structure factor of twin domain m and n is the number of
twin domains. The sum of the fractional contributions km

must be unity, so (nÿ 1) of them can be re®ned and k1 is
calculated by

k1 � 1ÿ
Xn

m�2
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Four types of twins may be distinguished:

(a) Twins by merohedry: The twin law is a symmetry
operator of the crystal system, but not of the point group
of the crystal. This means that the reciprocal lattices of
the different twin domains superimpose exactly and the
twinning is not directly detectable from the re¯ection
pattern. Two types are possible:

(i) The twin operator belongs to the Laue group, but
not to the point group of the crystal. These crystals are
racemic twins. There are no special problems in solving
and re®ning such structures. The only question to be
resolved is the determination of the absolute structure.
Even if the determination of the absolute con®guration
is not one of the aims of the structure determination, it is
important to re®ne any non-centrosymmetric structure
as the correct absolute structure in order to avoid
introducing systematic errors into the bond lengths etc.
(Cruickshank & McDonald, 1967). In some cases the
absolute structure will be known with certainty (e.g.
proteins), but in others it has to be deduced from the X-
ray data. Generally speaking, a single phosphorus or
heavier atom suf®ces to determine an absolute structure
using Cu K� radiation and with accurate high-resolution
low-temperature data, including Friedel opposites, such
an atom may even suf®ce for Mo K�.

The de®nition of the Flack parameter (Flack, 1983;
Bernardinelli & Flack, 1985) is a special case of (1)

�F2
c �� � �1ÿ x�F2

c �hkl� � xF2
c �hkl� �3�

where x is the fractional contribution of the inverted
component of a `racemic twin'; it should be zero if the
absolute structure is correct, unity if it has to be inverted
and somewhere in-between if racemic twinning is really
present. Thus, the above formulae apply with n = 2 and
the twin law R = (1Å00, 01Å0, 001Å).

(ii) The twin operator is part of the symmetry of a
lattice point (holohedry). It does not belong to the Laue
group of the crystal. This type is possible in the trigonal,
tetragonal, hexagonal and cubic crystal systems. If the
different twin domains have similar contributions, the
re¯ection intensities appear to possess a higher
symmetry than the true structure. The determination of
the correct space group and solving the structure can be
dif®cult. Patterson or molecular replacement methods
may solve the problem. This type of merohedral twin-



ning may, at least in theory, occur simultaneously with
racemic twinning (i).

(b) Twinning by pseudo-merohedry: The twin
operator belongs to a higher crystal system than the
structure. This may happen if the metric symmetry is
higher than the symmetry of the structure; typical
examples are monoclinic structures with either � very
close to 90� or a and c almost equal. The problems are
the same as in the case of type (ii). Depending on how
well the higher metric symmetry is ful®lled it may
happen that the reciprocal lattices overlap exactly and
the twinning is not detectable from the diffraction
pattern. The structure appears to have a higher
symmetry than it in fact possesses. Solving and re®ning
such twins requires essentially the same procedures as
for merohedral twins.

In contrast to the two ®rst types of twinning, in the
remaining two types not every re¯ection is affected by
the twinning. This means that the twinning may be
detectable from the diffraction pattern. Structure solu-
tion may be possible by identifying and using only those
re¯ections that are contributed to by a single twin
domain alone.

(c) Twinning by reticular merohedry: A typical
example is obverse/reverse twinning of a rhombohedral
structure. This means that the reciprocal lattices of the
different twin domains again superimpose exactly, but
that systematic absent re¯ections for one domain are
present for the others and vice versa. If enough re¯ec-
tions are only present for one twin domain, structure
solution should be possible using these re¯ection
intensities alone, possibly augmented by the intensities
of the common re¯ections divided by the number of
contributors.

(d) Non-merohedral twins: The twin operator is an
arbitrary operator. The reciprocal lattices do not exactly
overlap. There are some re¯ections which overlap or
cannot be distinguished from each other, while the
majority of the re¯ections are not affected by the
twinning. The diffraction pattern should normally reveal
the twinning. Cell determination using automated
diffractometer software may be a problem. Space-group
determination may be a little complicated, because some
systematically absent re¯ections may be affected by the
other twin domains. With the correct unit cell and a
subset of the data, structure solution should normally be
possible, but the re®nement may well be unsatisfactory
unless overlap of some re¯ections caused by the twin-
ning is taken into account.

If the reciprocal lattices of the twin domains do not
exactly overlap, even a re®nement taking the twinning
into account often still remains unsatisfactory. Different
reciprocal lattices have different orientation matrices. If
the data are measured on a normal four-circle diffract-
ometer without any kind of area detector and only the
orientation matrix of one domain is used, the re¯ections
of the other domains are of poor quality. The re¯ections

that have contributions from several domains may have
bad shapes and macroscopic domains may well not be
centred on the goniometer. Sometimes it is easier to
look for better crystals than to collect such data and try a
re®nement taking twinning into account (see Example
4). Otherwise, special programs for data collection
should be used (Henke, 1995). Area detectors are much
better suited than point detectors for the collection of
data from twinned crystals, but special software is
required to analyse the data (Hahn, 1997). Sparks (1997)
has presented programs for area detectors and discussed
examples of their use.

2. Examples

Twinned crystals tend to have a poor effective data-to-
parameter ratio, so they often require restraints

to obtain a satisfactory re®nement (Watkin, 1994). In
these examples, except where otherwise stated, the
following restraints were employed: distance restraints
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for chemically equivalent 1,2- and 1,3-distances,
planarity restraints for groups such as phenyl rings,
rigid-bond anisotropic displacement parameter (ADP)
restraints (Hirshfeld, 1976; Rollett, 1970; Trueblood &
Dunitz, 1983) and `similar ADP restraints' (Sheldrick,
1998). Even when restraints are employed the distribu-
tion of the displacement parameters (ORTEP plot;
Johnson, 1965) and residual features in a difference
electron density map are often less satisfactory than for
a normal structure determination.

3. Example 1

Structure (1) is an example of twinning by merohedry. It
could not be solved by routine methods. The composi-
tion of the compound was not known with certainty, but
some triphenylphosphine ligands were anticipated. The
®rst problem was to determine the space group. The
crystals appear to be trigonal with a = b = 12.623 (2) and
c = 26.325 (5) AÊ . There were systematic absences for a 31

or a 32 axis. The Rint value (Rint = �|F2
o ÿ F2

o(mean)|/
�[F2

o]) for the Laue group 3Å was quite acceptable
(0.067), but the value for the Laue group 3Åm was only
slightly higher (0.120). It was possible to obtain the
coordinates of the osmium and four P atoms from the
Patterson (Sheldrick, 1992) in the space group P32, but
the resulting difference electron density map was not
very satisfactory. In spite of the relatively low R values
[wR2(all data) = 0.57, R1 [I > 2�(I)] = 0.24, wR2 =
{�[w(F2

o ÿ F2
c )2]/�[w(F2

o)2]}1/2, R1 = �||Fo| ÿ |Fc||/�|Fo|]
only a small part of the structure could be identi®ed.

However, there were some typical warning signs of
twinning. The mean value of |E2 ÿ 1| was very low

(0.510) and the Rint value for the higher symmetric Laue
group was signi®cantly, but only slightly, higher than for
the lower symmetric one. This could mean that the
twofold axis was not a true crystallographic one, but the
twin law. This axis interchanges h and k and reverses l, so
the matrix is 010, 100, 001Å . Taking this twinning into
account substantially improved the re®nement. The R
values dropped to 0.13 (R1) and 0.35 (wR2). Several
phenyl rings could now be located and after a few cycles
of re®nement the whole structure could be found. The
re®nement of k2 converged to 0.404 (5). Fig. 1 shows the
®nal structure. The structure will be discussed more fully
elsewhere.

In non-centrosymmetric space groups and with heavy
atoms such as osmium it should be possible to determine
the absolute structure. The Flack parameter x (Flack,
1983) re®ned to 0.61 (6). This could mean that the
absolute structure is wrong and the space group P31 is
correct rather than P32 and/or that there is some addi-
tional racemic twinning. Changing to the space group
P31 and re®ning as a four-component twin so as to take
racemic twinning into account showed that P31 is indeed
the correct space group and that there is no racemic
twinning, but that the twin law should be changed to 01Å0,
1Å00, 001. This could be recognized by the re®ned k
values: k2 = 0.064 (13) for matrix 010, 100, 001Å , k3 =
0.038 (17) for matrix 1Å00, 01Å0, 001Å and k4 = 0.329 (13) for
matrix 01Å0, 1Å00, 001. It was necessary to introduce some
restraints. There are nine chemically equivalent phenyl
rings, so all chemically equivalent 1,2- and 1,3-distances
in the nine rings were restrained to be the same. For
every phenyl ring a planarity restraint was employed.
For the anisotropic displacement parameters of the C
atoms it was necessary to use the rigid bond and simi-

Fig. 1. Structure of (1), hydridochlorocarbonyltris(triphenylphos-
phine)osmium(II).

Fig. 2. Structure of (2), (�8-cyclooctatetraenyl)[hydrotris(pyrazol-1-
yl)borato]titan(III).
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larity restraints. There is also one disordered ethanol
molecule in the cell; distance and ADP restraints were
employed to re®ne it. The re®nement of 606 parameters
with 4384 data and 1354 restraints converges to R1 =
0.046 [for I > 2�(I)], wR2 = 0.102 (all data) and an
absolute structure parameter of 0.026 (13).²

4. Example 2

The second structure (Kilimann et al., 1994) is an
example of twinning by pseudo-merohedry. Fig. 2 shows
the ®nal structure. The structure appeared to be rhom-
bohedral [a = b = 11.083 (2), c = 11.953 (2) AÊ ]. Again the
mean value of |E2 ÿ 1| (0.647) was lower than expected.
There were no additional systematic absences. The Rint

values for the Laue groups R3Å and R3Åm were identical
(0.042) and the structure was initially solved by direct
methods (Sheldrick, 1990) in the space group R3m. The
pyrazole ring system was quite normal, but rather than
the eight-membered cyclooctatetraene ring a six-
membered ring with very long carbon±carbon bonds
appeared in the electron density map. This was caused
by the assumption of a threefold axis; there was only one
sixth of a molecule in the asymmetric unit, so the eight-
membered ring should be disordered. With distance
restraints for the equivalent 1,2- and 1,3-CÐC distances,
a planarity restraint for the ring, rigid-bond restraints
and hard similarity restraints (standard uncertainty, s.u.,
of 0.005), even an anisotropic re®nement of the disor-
dered model was possible, but the data-to-parameter
ratio was awful.

Since part of the structure does not ful®l the threefold
symmetry, the correct space group may be Cm rather
than R3m, with the apparent threefold axis as the twin
law. The low value for Rint in R3m would then be caused
by twinning. With the matrix ÿ0.3333 0.3333 ÿ0.6667,
110, 0.3333 ÿ0.3333 ÿ0.3333, the hexagonal cell is
transformed into a monoclinic C-centred cell with a =

10.220 (2), b = 11.083 (3), c = 7.538 (3) AÊ , � = 96.85 (3)�.
The structure was solved again by direct methods in the
new space group. Now there is one half of the molecule
in the asymmetric unit. The structure ful®ls the mirror
symmetry and there is no longer any disorder. To derive
the matrix notation of the threefold axis in the mono-
clinic cell it is necessary to multiply three matrices. The
®rst matrix is the one above that transforms the hexa-
gonal cell into the monoclinic one, the second describes
the threefold axis in the hexagonal cell (010, 1Å1Å0, 001)
and the last is the transformation from monoclinic to
hexagonal, which is the inverse of the ®rst matrix. The
result is the matrix 0.5 ÿ0.5 1, 0.5 ÿ0.5 ÿ1, 0.5 0.5 0. For
the re®nement of this model again several restraints
were helpful. All chemically equivalent 1,2- and 1,3-
distances were restrained to be equal. For the aniso-
tropic displacement parameters of the N and C atoms
relatively hard rigid-bond (s.u. 0.002) and softer simi-
larity restraints (s.u. 0.01) were used. For the eight-
membered ring a planarity restraint was imposed. It was
necessary to employ damping, otherwise the re®nement
did not converge. Since this leads to slightly lower s.u.'s
than the correct ones, the ®nal re®nement cycle was
performed with zero `shift multipliers' and without
damping in order to obtain unbiased standard uncer-
tainties. Table 1 compares the two re®nements. Primarily
because of the better data-to-parameter ratio, we
preferred the twinned re®nement to the disordered
re®nement and the structure was published in Cm. The
almost identical k values show that the crystal was an
ideal `drilling' (a German word), which explains the low
Rint value in the rhombohedral space group.

5. Example 3

The third example is the structure of the thallium
compound C19H33LiN3Tl (Armstrong et al., 1993). It is
again an example of twinning by pseudo-merohedry.
The data were collected with the following monoclinic
primitive cell: a = 13.390 (3), b = 25.604 (6), c =
13.390 (3) AÊ , � = 112.39 (3)�. a and c have equal lengths
and therefore the matrix 101, 1Å01, 01Å0 transforms this
cell into an orthorhombic C-centred one with a = 14.900,
b = 22.252, c = 25.604 AÊ (LePage, 1982). The Rint values
are similar: 0.097 for the orthorhombic case and 0.081
for monoclinic, so the orthorhombic system was tried
®rst. The mean value for |E2 ÿ 1| was 1.074, but the
systematic absences were strange and the Siemens
SHELXTL-Plus program XPREP (Sheldrick, 1991)

Table 1. Comparison of the re®nements of (2) in Cm and
R3m

Cm R3m

R1 [I > 2�(I)] 0.025 0.020
wR2 (all data) 0.069 0.050
k2, k3 0.341 (5), 0.327 (5) Ð
Flack x ÿ0.06 (3) ÿ0.01 (3)
Number of data 1064 437
Parameters 131 111
Restraints 165 168
Data/parameter ratio 8.1 3.9
S.u. (CÐC) in C8H8 0.004±0.006 0.012±0.014
S.u. (CÐC) in pyrazole 0.005±0.008 0.004

Table 2. Systematic absence exceptions for example (3)

21 a c n

Number of re¯ections 22 225 225 232
Number of re¯ections with I > 3� 0 84 83 167
Mean intensity 0.6 32.6 27.6 57.3
Mean intensity-to-sigma ratio 0.5 8.7 8.3 16

² Lists of atomic coordinates, anisotropic displacement parameters
and structure factors have been deposited with the IUCr (Reference:
JZ0004). Copies may be obtained through The Managing Editor,
International Union of Crystallography, 5 Abbey Square, Chester CH1
2HU, England.
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could not ®nd any acceptable space group. In the
monoclinic crystal system the mean value of |E2ÿ 1| was
1.119. Again the systematic absences were strange, as
shown in the following reciprocal space plot of the h0l
layer (Fig. 3) and in Table 2.

The distributions for an a or a c glide plane were quite
similar. In the reciprocal space plane h0l there are many
very strong and also many very weak re¯ections (this is
the reason for the anomalously high value for the mean
of |E2 ÿ 1|). All re¯ections with h and l even are very
strong and all re¯ections with both h and l odd are
nearly absent. Taking into account that a and c have
equal lengths, there is a simple explanation. The crystal
is twinned and the twin law is 001, 01Å0, 100. Therefore, a
and c are interchanged and the correct space group is
P21/c. The absences are caused by the overlap of the two
twin domains with effective space groups P21/c and
P21/a. Again the relatively low Rint value for the higher
symmetric (i.e. orthorhombic) description is caused by
twinning. It was possible to obtain the coordinates of
two Tl atoms from a Patterson map in P21/c. With these
coordinates the whole structure could be found in a
difference electron density map. There are two inde-
pendent and almost identical molecules in the asym-
metric unit. The structure re®ned to R1 [I > 2�(I)] =

0.043, wR2 (all data) = 0.112, k2 = 0.474 (1). Fig. 4 shows
one of the cation±anion pairs.

6. Example 4

The last structure is methylene diphosphonic acid,
CH6O6P2 (DeLaMatter et al., 1973; Peterson et al.,
1977), and is an example of a non-merohedral twin. The
space group is P21/c with a = 7.820 (4), b = 5.468 (3), c =
13.693 (6) AÊ , � = 103.57 (4)�. Direct methods solved the
structure with no problems. There were several re¯ec-
tions that violate the systematic absences. For most of
them |h| was 6 or 1. There were also no problems with
the re®nement, but the R values were very high (see
re®nement A in Table 3). Many re¯ections disagreed
substantially with the model. For all of them |h| was 0, 1,
5 or 6, and Fo was greater than Fc. The factor K =
mean(F2

o)/mean(F2
c ) was very high for the re¯ections

with low intensity. There were also many high residual
peaks with densities of more than 1 e AÊ ÿ3. Omission of
the `most disagreeable' re¯ections with F2/s.u. > 6
(re®nement B) lowers the R values and also the residual
density, but the result was not yet satisfactory. Disorder
or solvent molecules were not detectable.

Again interpretation of the twinning solved the
problem. To derive the twin law we had to ®nd a matrix
that transforms the cell into an equivalent cell, see Fig. 5.
We knew that a factor of 1/6 or 5/6 in a was involved.
After several trials we found the matrix 100, 01Å0,
ÿ0.8217 (�5/6)01Å . The reciprocal lattices coincide

Fig. 3. h0l layer of reciprocal space for example (3).

Table 3. Comparison of different re®nements of (4)

(A) original data (B) without
�F2/s.u. > 6

(C) without |h| =
0,1,5,6

(D) |h| = 0 or 6
split

(E) |h| = 0,1,5 or 6
split

(F) E less �F2/s.u.
> 6

Unique data 1667 1654 991 2977 2992 2974
R1 [I > 2�(I)] 0.101 0.091 0.040 0.083 0.057 0.050
wR2 (all data) 0.300 0.251 0.104 0.252 0.221 0.146
K² 13.225 8.490 0.023 4.436 0.388 0.413
��max (e AÊ ±3) 1.97 1.70 0.33 1.47 0.80 0.56
k2 Ð Ð Ð 0.206 (6) 0.170 (3) 0.205 (2)
S.u. (PÐO,PÐC) 0.006±0.008 0.005±0.007 0.002±0.004 0.004±0.006 0.003 0.002±0.003

² K = mean (F2
o)/mean (F2

c ) for 0 < Fc/Fcmax
< 0.016.

Fig. 4. Structure of (3), showing one of the two independent cation±
anion pairs [PMDETA.Li]+[CpTlICp]ÿ.
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almost exactly when |h| = 0 or 6. When |h| = 1 or 5, the
re¯ections are so close that in most cases they cannot be
resolved from one another.

In test C all re¯ections with |h| = 0, 1, 5 or 6 were
omitted. The R values dropped substantially and the
residual density was now in the normal range. The K
value [mean(F2

o)/mean(F2
c )] for the re¯ections with 0 <

Fc/Fcmax
< 0.016 is now very low. The most disagreeable

re¯ection has �F2/s.u. = 6.96. In a second step we took
twinning for the re¯ections with |h| = 0 or 6 into account.
The R values dropped, but there were still many
re¯ections with |h| = 1 or 5 which were inconsistent.
Therefore, we also split the re¯ections with |h| = 1 and 5
(re®nement E). This re®nement was better, but now the
intensities of some re¯ections with |h| = 1 were under-
estimated. For these re¯ections, both reciprocal lattices
were distinguishable and only one re¯ection had been
measured. Therefore, for our ®nal re®nement (F) we
omitted all the re¯ections with F2/s.u. > 6.

This structure is known and in the literature there is
no indication of twinning. Re®nement F results in
similar s.u.'s to the published untwinned structure,
although the R value is higher, probably because of the
problem handling partial overlap; we also suspect that
one twin component was better centred in the beam
than the other.

7. Conclusions

Twinning usually arises for good structural reasons.
When the heavy atom positions correspond to a higher
symmetry space group it may be dif®cult or impossible
to distinguish between the twinning and disorder of light
atoms (Hoenle & von Schnering, 1988). Since re®ne-
ment as a twin usually requires only two extra instruc-
tions and one extra parameter, in such cases it should be
attempted ®rst before investing many hours in a detailed
interpretation of the `disorder'! Re®nement of twinned
crystals often requires the full arsenal of constraints and
restraints, since the re®nements tend to be less stable,
and the effective data-to-parameter ratio may well be
low. In the last analysis chemical and crystallographic

intuition may be required to distinguish between the
various twinned and disordered models, and it is not
easy to be sure that all possible interpretations of the
data have been considered.

Experience shows that there are a number of char-
acteristic warning signs for twinning given in the
following list. Of course not all of them can be present in
any particular example, but if one ®nds several of them,
the possibility of twinning should be given serious
consideration.

(a) The metric symmetry is higher than the Laue
symmetry.

(b) The Rint value for the higher-symmetry Laue
group is only slightly higher than for the lower-
symmetry Laue group.

(c) The mean value for |E2ÿ 1| is much lower than the
expected value of 0.736 for the non-centrosymmetric
case. If we have two twin domains and every re¯ection
has contributions from both, it is unlikely that both
contributions will have very high or very low intensities,
so the intensities are distributed so that there are fewer
extreme values. Other tests based on intensity statistics
have been proposed (Rees, 1980). However, the use of
the mean |E2 ÿ 1| value is particularly simple, because it
is a single number and often calculated by data reduc-
tion and direct methods programs.

(d) The space group appears to be trigonal or hexa-
gonal.

(e) The apparent systematic absences are not consis-
tent with any known space group.

(f) Although the data appear to be in order, the
structure cannot be solved. This may also happen if the
cell is incorrect, e.g. with a halved axis.

(g) The Patterson function is physically impossible.
The following points are typical for non-merohedral
twins, where the reciprocal lattices do not overlap
exactly and only some of the re¯ections are affected by
the twinning.

(h) There appear to be one or more unusually long
axis.

(i) There are problems with the cell re®nement.
(j) Some re¯ections are sharp, others split.
(k) K = mean(F2

o)/mean(F2
c ) is systematically high for

the re¯ections with low intensity. This may also indicate
a wrong choice of space group in the absence of twin-
ning.

(l) For all of the `most disagreeable' re¯ections, Fo is
much greater than Fc.

We thank N. W. Alcock for kindly donating the data
of structure (1) and P. G. Jones for the data of (4).
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